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Topics today

annual variation in growth increments

scaling environmental covariates for model estimation

linear mixed models of weight-at-age

mechanistic models of length-at-age

AICc for model selection

2 / 17



Weight-at-age is a component of productivity
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Ford-Walford plots
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Ford-Walford plots with extra dimensions
(temp > mean_temp): FALSE (temp > mean_temp): TRUE
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Modelling annual growth incrememts

the environment varies, so growth rates vary

model Lt as a function of Lt−1 or Lt−∆t and the environment

easier if you scale variables to the average environment (mean=0 and sd=1,

Schielzeth 2010)

allows clear interpretation of 0 coefficient estimate => 0 effect

better for some estimation algorithyms

we omitted the plus-age-group because it is a time-varying mixture of ages

Schielzeth, H., 2010. Simple means to improve the interpretability of regression coefficients. Methods

Ecol. Evol. https://doi.org/10.1111/j.2041-210X.2010.00012.x
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The simplest way is with a linear mixed model (LMM)

An overly simple formula could be

log(Wnext) ~ log(Wnow) + temperature + (1|year) + (1|cohort)

“log-weight next year depends on log-weight now and the temperature this year”

(1|year) means that the intercept varies by year (i.e. good and bad years)

(1|cohort) means that the intercept varies by cohort (i.e. some cohorts have a

lifelong advantage)

assumes random year effects are 0 on average and have a normal distributions

same for cohorts
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For more flexibility, we could make the formula more complicated

logw2 ~ logw + age+ logw:age + I(ageˆ2) + I(logwˆ2) +

logw:I(ageˆ2)+ sal.s + ssb.s + temp.s +I(temp.sˆ2) + logw:sal.s +

logw:ssb.s + logw:temp.s +(1|cohortf) + (1|yearf)

sal.s salinity (mean=0, sd=1)

ssb.s SSB (mean=0, sd=1)

temp.s temperature (mean=0, sd=1)
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A Ford-Walford plot with model predictions including age, SSB, and
temperature
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Simplify the model by doing model selection on the fixed effects

logw2 ~ logw + age+ logw:age + I(ageˆ2) + I(logwˆ2) +
logw:I(ageˆ2)+ sal.s + ssb.s + temp.s +I(temp.sˆ2) + logw:sal.s +
logw:ssb.s + logw:temp.s + (1|cohortf) + (1|yearf)

Keep the random effects to avoid pseudoreplication (Hurlbert 1984).

AIC should select the best predictive model (assuming all correlations are
accounted for).
BIC is sometimes used to get an even simpler model, but is intended for cases
where you think the true process is represented by one of the models your
selecting from.
AICc is AIC corrected for small sample size.

Hurlbert (1984), Pseudoreplication and the Design of Ecological Field Experiments. Ecological
Monographs, 54: 187-211. https://doi.org/10.2307/1942661
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Select from all subsets of global model

MuMIn::dredge() will do it automatically

you choose the infomration criteria (AIC, AICc, BIC)

broom.mixed::tidy will extract estimated coefficients with CI

beware that CI will always be too narrow and p-values too low after model

selection

See code in LMM_had_example.R
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Mechanistic growth models

converted weights to lengths
modeled annual growth increments using

Gompertz Lt+∆t = e log(L∞)(1−e−K∆t )+log(Lt )e−K∆t

Specialised von Bertalanffy Lt+∆t = Lt + (L∞ − Lt)(1 − e(−K∆t))
Generalised von Bertalanffy Lt+∆t = ((L∞)1/D(1 − e−K∆t) + L1/D

t e−K∆t)D

in each of the above L∞ = exp(Xβ + εcohort + αyear )
Xβ selected from global model formula ~1 + ssb.s + sal.s + temp.s via
AICc
εcohort and αyear are normal random intercepts with mean 0
Lt,observed ∼ N(Lt,predicted , σresidual)
converted predicted lengths back to weights
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Example stock “had.27.46a20”

Generalised von Bertalanffy Lt+∆t = ((L∞)1/D(1 − e−K∆t) + L1/D
t e−K∆t)D

See code in laaGrowth_had_example.R
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Predictions from a lognormal model

If x ∼ N(µ, σ2) then ex has a lognormal distribution

with expectation e(µ+σ2/2)

This model glmmTMB(logw2 ~ logw + age + sal.s + ssb.s + temp.s+

(1|cohortf) + (1|yearf), data=dat) has 3 components to the variance

σ2
total = σ2

cohort + σ2
year + σ2

residual

See code in LMM_had_example.R line 64

The mechanistic model code doesn’t require this step because it fits the response on
the natural scale.
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Redo the analyses and discuss in subgroups

Use “sol.27.7a.Rdata”

Look closely at the AICc table from LMMs.

What environmental covariates are in most of the top models?

What does the top model say (with overly-narrow CI)?
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The bottom line

Of the 27 stocks that I applied these methods to, for 70% of them, a 3-year average of
the most recent observations did a better job of predicting weight-at-age than any
model I could come up with.

You’ll see some of the forecasting tests in Marc’s lessons later on.
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