How to prepare climate projections?

To account for potential offset and uncertainty of climate projections in MSE-simulations

Bernhard Kühn Marc Taylor

Goal

- environmental covariates for the historical part
- Downscaled climate-projection available

What to do now?

Goal

What can you do to integrate environment-productivity relationships into MSE I need to project my environment-productivity relationship within a MSE Forecast environmental covariates I have projections from I have historical observations climate model(s) Downscale and biascorrect climate model projection to match historical time series Specify multiple operating models (OMs) No environment-productivity relationship in reference OM with alternative I need to conduct my MSE Avoid long projection periods into distant future Action

WKecoMSE-report 2024

What type of data to use for the history, what type of data to use for the future?

General description

Historical data

- Use of observational data or reanalysis to capture the interannual signal
- Data sources that span a large historical period (1960/70s – now)
- Data that has an aquivalent in the respective future projection

Climate projections (future data)

 RCP4.5 and RCP8.5 climate projections from a regionallydownscaled ocean model

How to link historical and future data?

Just continue!

(and be aware that for the historic period the interannual pattern might be not perfectly resolved)

Different data product for history and future

Bias correction needed!

 Correct for the offset and/or different variance of historical and future data

How to link historical and future data?

https://figshare.com/articles/software/Tutorial -

Ways to bias correct climate projections/23514618

Bias correction:

 Bias correct future projections to match with historical data

Different methods to do this:

- Delta method (mean-bias correction)
- Quantile mapping (Q-mapping)

Mean-Bias correction

- Just remove the mean-bias (offset) between historical and future data (for each grid-point in the case of spatio-temporal data)
- e.g. by calculating the offset in an overlapping period

Bias correction of climate projections

berillaru Kue

14-06-2023

- Introduction
 - Load data & helper functions
- step-by-step guide for bias correction
 - 1. pre-processing and data preperation
 - 2. Mean Bias correction
 3. check Bias correction
 - a 4 Ouantile manning
- Write out and store on the disk
- An example with Variance change Zooplankton

Introduction

Often historical data used for fitting environment-species relationships and climate projections do not originate from the same data source
There could be a considerable offset between historical environmental data and climate projections. To match both of these datasets to the
same scale, bias correction is needed. In this tutorial, I will explain a few relatively simple ways on how to do this, namely mean-bias correction.

Quantile mapping

- Try to match the eCDF (empirical distribution function of the data)

→ allows to correct for differences in the variance

Mean-Bias correction

 Simple way to correct for the difference in mean between two time series/ spatial grids

steps:

- decide on a time period for which to remove the mean bias (offset) e.g. the mutual overlapping period
- 2. calculate the mean for the historical time series and the projected time series in this overlapping period & calc. bias

$$bias = \mu_{proj} - \mu_{hist}$$

3. remove the offset from the projection

$$ts_{proj,corrected} = ts_{proj,raw} - bias$$

Quantile-mapping (Q-map):

- Doing a Q-mapping directly on the raw data is not trend-preserving
- Therefore one needs to do several pre-processing steps to get meaningful results

steps:

- 1. decide on a time period to base the quantile mapping on aka the 'correction time period' → remove the individual trends from both the historical part and projection in this 'correction time period'
- 2. perform Quantile mapping on this trend-corrected data
- 3. remove the trend from the whole projection period (e.g. 2006 2100)
- 4. apply this fitted Qmap-model to this trend corrected data for the whole projection period
- 5. calculate the mean-bias (same as for the delta correction method above) for the chosen 'correction time period'
- 6. add everything back together: the qmapped-projection the mean bias + the projection trend

Uncertainty in future environmental data

Uncertainty

Various different climate models

Between-model variability/uncertainty

Show

Only one climate model

within-model variability/uncertainty

- Sometimes only one future climate model output available
- → Only one time series (aka realisation) of e.g. temperature available
- In a stochastic MSE simulation, we need more than one realisation to run Monte-Carlo simulations

One realisation

several realisations
preserving trend and
autocorrelation of the data

Idea is now: create realisations that capture the variability and autocorrelation of the original time series, but also relationships between different variables (cross-correlations between e.g. temperature and salinity)

Uncertainty in future environmental data

Use Bayesian Vector Autoregressive models (BVARs) to create new (artificial time series) that preserve trend, autocorrelation and cross-correlations of the original data

- a Vector-Autoregressive process (VAR) is basically the multivariate version of an autoregressive process (AR)
- Model a variable based on own lagged influences and past influences of other variables
- Bayesian estimation allows for constraining coefficients and a more stable fitting
- ⁹ procedure

CPSD Salinity.PC2-SST.PC1

CCF Salinity.PC2-SST.PC1

Summary

Steps to prepare environmental data for the explicit consideration in MSEs:

- 1. Choose adequate data for the history, which can be complemented with available time series of future climate change
- 2. Bias correction if needed
- 3. Address future incorporation of climate variability/uncertainty

